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A Hamiltonian formulation for two hierarchies of 
thermodynamic evolution equations 

M Grmela and D Jout  
Ecole Polytechnique de  Montr6a1, Case Postale 6079. suc A, Montreal, Quebec, Canada 
H3C 3A7 

Received 26 June 1990, in final form 12 November 1990 

Ahstraet. Two hierarchies of thermodynamic evolution equations leading to continued- 
fraction expansions for generalized frequency- and wavevector-dependent transport 
coefficients are Cast in Hamiltonian form. In the nonlinear regime, the Jacohi identity 
implies several requirements on the lransport coefficients which had not been previously 
explored and which are beyond the scope of the thermodynamic r e m i d i o m  coming from 
the second law. 

1. Introduction 

The methods of symplectic geometry have been increasingly used in many domains 
of physics, such as classical mechanics, geometrical optics, fluid mechanics and ther- 
modynamics (Salmon 1988, Arnold and  Givental 1990). Here we present a n  illustration 
of their use in two hierarchies of thermodynamic evolution equations which arise in 
the description of high-frequency phenomena in macroscopic systems. 

When a macroscopic system is described on a timescale of the order of collision 
times, as required in ultrasound experiments in dilute gases and in neutron-scattering 
experiments in liquids, one  must take into account not only the usual conserved 
variables, but a host of fast-relaxing non-conserved ones. At such high frequencies, 
the  local equilibrium is never attained, and  the fast variables must be considered as 
independent ones. The equations describing their evolution are of primary interest in 
these situations. 

Of course, the detailed structure of such equations in real systems is very involved, 
but some relatively simple schemes have been proposed from several points of view. 
Some of them yield continued-fraction expansions for the corresponding generalized 
frequency- and wavevector-dependent transport coefficients. Indeed, from the Ructu- 
ation-dissipation theorem it is known that the generalized transport coefficients are 
proportional to the Fourier transform of the time-correlation function of the corre- 
sponding dissipative fluxes. For instance, one has for the generalized electrical conduc- 
tivity U J O )  and for the generalized thermal conductivity A ( w )  the expressions (Kubo 
1957, Jou er al 1988) 

re( = ( 1 / k T )  (WW) (0 1 (1.1) 

A (U) = ( l / kT2)  ( b 8 9 , )  ( w )  ( 1.2) 
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with (. . .) standing for the equilibrium average, SJ and Sq being the fluctuations of 
the electric current and of the heat flux around their zero equilibrium value. Thus, the 
evolution equations describing the decay of the fluctuations of the fluxes around 
equilibrium are directly related to the generalized transport coefficients, consistent with 
the fluctuation-dissipation theorem. 

Some relatively simple schemes of the evolution equations for the fluctuations yield 
continued-fraction expansions of the form (Mori 1965, Jou et a1 1988) 

M Grmela and D Jou 

g,(w) =(SJ,(O)SJ,(O))(kT)-' 
1 +ior, + a , ( k )  

1 + iwr ,+ a,(k) 
1 +ior,+a,(k) 

1+iWT4+ . . .  (1.3) 

with SJ(0 )  the initial value of the fluctuation, r, a set of suitable relaxation times and 
a,(k) a set of coefficients which may be a function of the wavevector k. 

The usual non-equilibrium thermodynamics, based on the local-equilibrium 
hypothesis, only gives information on the low-frequency limit of the transport 
coefficients, unless some internal variables are taken into account. However, other 
thermodynamic developments, such as the so-called extended irreversible thermody- 
namics (Em) (Nettleton 1959, Casas-Vazquez ef a1 1984, Muller 1985, Jou er a1 1988, 
Garcia-Colin 1988), are able to cope with generalized transport coefficients and, in 
particular, with developments of the form of a continued fraction (Pirez-Garcia and 
Jou 1985, 1986). The aim of EIT is to formulate a set of evolution equations for 
non-conserved variables, usually taken to be the common dissipative fluxes (heat flux, 
diffusion flux, electrix flux, viscous pressure tensor, etc.) but extended to higher-order 
fluxes when it turns out to be necessary. 

The aim of this paper is to provide a Hamiltonian formulation for the evolution 
of the fast variables leading to (1.3). There are several reasons that justify this aim. 
Conciseness and elegance is one of them: the whole set of equations is replaced by a 
single relation which, furthermore, throws a new light on the generating functional, 
which may be generally identified with a well defined physical quantity, such as entropy 
or Gibbs free energy (Grmela 1986, 1989). Besides this, the Hamiltonian formulation 
allows one to use of subtle and powerful mathematical techniques developed for 
general Hamiltonian systems (Holm er a1 1985, Salmon 1988, Arnold and Givental 
1990). 

More important even is the fact that the Hamiltonian requirement yields a set of 
restrictions on the transport coefficients appearing in the reversible part of the evolution 
equations. Such restrictions are beyond the reach of non-equilibrium thermodynamics. 
To make it evident in a simple but very illustrative and important set of equations is 
the main result of this paper. 

The equations of the standard version of EIT, involving only the heat flux and the 
viscous pressure tensor (Jou er a1 1988), have been recently cast in Hamiltonian form 
by Grmela and Lebon (1990). to which we refer for explicit details. The present 
extension to hierarchies of equations has an interest on its own: it  is more general, i t  
has specific physical motivations, it may be written in  a very compact form and if 
provides new information on nonlinear transport coeflcienfs. 

Sections 2 and 3 deal respectively with the homogeneous and the inhomogeneous 
situations. Section 2 is motivated by the well known Mori development of continued- 
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fraction expansions (Mori 1965) of the time-correlation functions based on projection- 
operator techniques. Section 3 comes from the higher-order moments developments 
of the non-equilibrium distribution function in kinetic theory of gases (Grad 1959, 
Waldmann 1967, Hess 1977, Eu 1981). The interest of both lines of research is a further 
motivation for the present attempt to write the corresponding equations in Hamiltonian 
form and to explore the Hamiltonian restriction in a nonlinear version. In section 4 
we study explicitly the consequences of the Hamiltonian hypothesis on the nonlinear 
transport coefficients. 

2. The homogeneous problem 

Assume a solid electrical conductor subjected to an electric field E. Let U be the specific 
internal energy per unit mass and J the electric current density. The evolution equation 
for U ,  when the heat flux is disregarded, is 

pu = E. J.  (2.1) 

In standard non-equilibrium thermodynamics (De Groot and Mazur 1962), the entropy 
is assumed to be a function of the classical variables ( U ,  in the present situation). In 
the simplest version of EIT, one assumes that the entropy s per unit mass depends also 
on the electric flux, i.e. s = s(u,  J )  (Jou et a1 1988). More generally, one may assume 
(Jou and Ferrer 1989) that the entropy depends also on higher-order time derivatives 
of J. To make them into independent quantities, we define (Mori 1965) 

J , ( f )  = J ( t )  

JLO = j i ( t ) - ( J i ( f ) ,  J,(O))J,(O) (2.2) 

J 2 ( O  = j d f )  - ( j > ( t ) ,  J d O ) ) J d O )  - ( J 2 ( t ) ,  J i ( 0 ) )  J i (0 )  

where (A ,  B )  is a 'scalar product' defined as 

J 

with Â  and B the microscopic operators of A and B, f,, the equilibrium distribution 
function and d r  the volume differential in the phase space. With this definition, the 
several J;(O) are uncorrelated with each other around equilibrium. 

In EIT  the generalized Gibbs equation is written as (Jou and Ferrer 1989) 

ds  = T-' du -E v a j J j .  dJ; (2.4) 

with U the specific volume per unit mass and (I, parameters which may depend on 
J ,  . J , ,  and whose physical meaning will be considered below. We will be interested in 
the evolution of fluctuations of J, around equilibrium in an  isolated system (E = O ) .  
In this case, the entropy production associated with the decay of the J, has the form 

where a dot denotes the material time derivative (we assume the system to be at rest 
here). 
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By following the usual methods of non-equilibrium thermodynamics we assume a 
linear relation between J, and the Jj. Since in  this paper we are interested in the 
thermodynamic information about continued-fraction expansions, we assume a set of 
evolution equations for the J ,  in the following tridiagonal form: 

- a ,  J, = q,!; J ,  + % { ?  5 2  

- O ~ ~ J ~ = O U ; , J , + % U ; J ~ + U U ; ~ J ~  (2.6) 
- ajJ, = 

This set of equations directly leads to a continued-fraction expansion, as it is immedi- 
ately seen in (2.7). Note that a more general set of equations could have been assumed, 
including more couplings in (2.6). However, since we are interested here in continued- 
fraction expansions and on an illustration of the restrictions coming from the Hamil- 
tonian hypothesis, the set (2.6) is sufficient for our study. 

In order to ensure that the entropy production is positive, the matrix of the 
phenomenological coefficients %;must be positive definite (this implies, amongst other 
requirements, that "U: > O ) .  Furthermore, the Onsager-Casimir reciprocity relations 
imply %;,(+, =-"U;-,,( because of the opposite time-reversal parity of J, and J,-, . Note 
that in the linear theory the coefficients "U:, do not depend on the fluxes J k .  

The set (2.6) yields for the Fourier transform of the time-correlation function of 
the fluctuations SJ,  

J ; - ,  + "U: J, + %:.,;+l J,+,  . 

( S J , a J i )  ( w )  = (6 J , ( O ) S  J , ( O ) )  
1 + i o n ,  + QlzLu21 

1 + i w r 2 +  %23"U32 
1 +iwT3+.. . (2.7) 

which, according to the fluctuation-dissipation theorem (1.1) leads to a continued- 
fraction expansion for the generalized electrical conductivity ue(w) .  Here, we have 
identified 

7. = a[/  %: %(,,+, = %;,,-,/"U;.. (2.8) 

One may also note that a, 3 0 because the entropy must be a maximum in equilibrium. 
In fact, the coefficients ai may be related to the second moments of the fluctuations 
of the corresponding J ,  around equilibrium as 

(SJ, , ,SJj .p)=(kt l lai)S, ,  (2.9) 
where k ,  is the Boltzmann constant. 

To study the dynamics of the fluxes around a non-equilibrium steady state character- 
ized by an electric field E, one may use as a potential the Legendre transform of z 
given by 

; [ E ]  = s ( u ,  J 8 )  + a , u u e E .  J ,  . (2.10) 

J;/aJ, = - ~ a , [ J , - u , E l  aSjaJ, = -ua,J, (i2 2). (2.11) 
This potential satisfies 

Following the same procedure as before, one finds for the corresponding evolution 
equations for the fluctuations around the steady-state value 

- a ,  J, = "U; ( J ,  - 
-u,J,= %;,(J, -u,E)+%1;J,+%J, (2.12) 

+ % i 2  

- a,J, = "U:,,- ,J,- ,  + '111 Jj + %:,,+I Ji+, 
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which give rise to a decay of the fluctuations of the same form as in the equilibrium 
situation. 

We want now to write the hierarchy (2.6) of evolution equations in the form (Grmela 
1986,1989, Grmela and Lebon 1990) 

d A / d t = { A , G J + [ A , G ]  (2.13) 

with {A,  G) a Poisson bracket, [A, GI a dissipative bracket and G a generating potential. 
Let us first consider the reversible part, which is assumed to be Hamiltonian, i.e. 

to derive from a Poisson bracket formalism with a given generating functional. We 
use here as a Poisson bracket (Salmon 1988) 

{A, B )  = L  pL,[(JA/JJr) (JB/J J,+,)-(dA/J J , + i )  (aE/JJ,)l. (2.14) 

For the moment, we consider the pr as constant parameters. It is easy to see that (2.14) 
is indeed a Poisson bracket because it satisfies (Salmon 1988, Arnold and Givental 1990) 

{A,  BI=-{B, A )  (2.15) 

{A, { B ,  C)I+{B, {C,  A)J+{C, {A, BI)=O (2.16) 

for every A, E, C function of the Js. The second equality, the so-called Jacobi identity, 
will play a central role in section 4. 

As the generating function G we take the Gibbs free energy 

c= U - T S  (2.17) 

which satisfies 

d G / J J ,  = Tua,[ J, - u , E ]  a G / J J , = T v u , J ,  ( 1 3 2 ) .  (2.18) 

I t  is easy to see that the hierarchies (2.6) and (2.12), without the dissipative part 
(corresponding to the diagonal terms in follow from 

dA/d t  = {A, GJ (2.19) 

provided one identifies 

p.  I = qr ,+d%+,W- '  (2.20) 

The  Onsager-Casimir antireciprocity comes now automatically from (2.19). 

Grmela (1986, 1989), we define the dissipative bracket as 
We now turn our attention to the irreversible part of (2.6) and (2.12). By following 

[A, G l = - ~ ( d A / a J ; ) ( d ~ / a G ; )  (2.21) 

with G, standing for ( aG/dJ , )  and 4 a dissipative potential such that 

4 =x s,(a+/Js,) (2.22) 

s, being equal to (&/&I,). 

antisymmetry of the qh, one obtains for the entropy production 
Note that when (2.6) is introduced into (2.5) and when one takes into account the 

u = p S = x  %(:J; J,. (2.23) 
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In the non-equilibrium steady state around an electric field E we may use relation 
(2.23) hut with the Legendre transform f of the entropy instead of s itself. This yields, 
according to (2.12), 

@=xOILrJi.Jj (2.24) 

M Grmela and D Jou 

with j ,  = J ,  -U&' and j ;  = J; ( i  2 2). Thus, we may write the potential + as 

4 = ( T Q )  1 (CY.! T.) j :  . j.. (2.25) 

When the prescriptions (2.14) and (2.21) are followed, (2.6) and (2.12) come directly 
from (2.13). Thus, the free energy of EIT acts as a generating function for the dynamics 
of those hierarchies. 

It is also of interest to outline that this generating function is related to the 
fluctuations of the fluxes around a non-equilibrium steady state through 

Pr(Su, SJ,)-exp(-(k,T)-'AG) (2.26) 

where AG is the change in the free energy associated with the fluctuation with respect 
to the steady state. Thus, (2.10) and (2.17) may be used to recast previous results o n  
the fluctuations of the electric current around its steady-state value (Jou et al 1982), 
where the probability was directly related to the second differential of the non- 
equiiiiirium entropy instead of being reiated to the change in G. 

3. The inhomogeneous problem 

We deal here with an inhomogeneous situation. To be specific, we concentrate on the 
problem of heat transport in a rigid heat conductor; Other situations, such as diffusion 
or shear viscous pressure, could he studied in an analogous way. 

The balance equation for the internal energy u is, for a rigid heat conductor, 

pli = -v . q. (3.1) 
We have neglected the work related with volume variations because of the rigid 
character of the conductor. Whereas in standard non-equilibrium thermodynamics the 
entropy s would only depend on U, in the simplest form of €IT one assumes that it 
also depends on q (Jou et al 1988). We take here a more general point of view and 
assume that s depends on the successive higher-order fluxes (Ptrez-Garcia and Jou 
1986), i.e. we take as variables a,  = q, a>, a 3 , .  . . in which an, a tensor of order n, is the 
flux of a,-, , a tensor of order n - 1.  The motivation to include the whole set of fluxes 
instead of only the heat flux is that all of them become 'slow' variables when q becomes 
slow because their relaxation times are of the same order. 

The generalized Gibbs equation now has the form (Ptrez-Garcia and Jou 1986) 

ds  = T-' du -E ua,ai .  da, (3.2) 

where a dot between the two tensors of order i stands for their complete contraction 
and U is the specific volume per unit mass. Furthermore, since we are now in an 
inhomogeneous situation, v:e need the entropy flux. We assume that it depends on all 
the fluxes ai as (Pkrez-Garcia and Jou 1986) 

J ' =  T- 'q- IP ia i+ i .a ; .  (3.3) 

Here, the dot means the contraction of a,+' and a, to give a vector. 
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The entropy production is given by 

pS+V . J ' = q ' V T - ' - X a ;  [ a ,da , /d t+p ,V .  (a ,+,)+V(p,+,a ,_ , ) ]  

(3.4) 

First, we will restrict our attention to the decay of the fluxes towards their zero value 
in a system in equilibrium (V T = 0). The simplest evolution equations for a; compatible 
with the positive character of the entropy production are 

a; da. /dt+p;V.  (a j+,)+V(pj- ,  a,_,)=-oUiaj (3.5) 

with %,*O. The definition of ai+, as the flux of a, implies pi = a,. By identifying the 
relaxation time rj of ai as rj = at /%j ,  one may write (3.5) as 

(3.6) da, /df+V . ( a ; + , ) + ( l / a ~ J V ( a j - , a j - , )  = - ( l / r j )a r .  

This hierarchy of equations leads to 

1 + iwr l  i (3.7) 

with Sq(0 )  the initial value of the fluctuation and / f =  (a j /a j+ , ) r ,T j+ ,  . A hierarchy like 
(3.5) generalizes the Maxwell-Cattdneo equation obtained when 1: = 0 (i3 1) and T, = 0 
( j  2 2) and is useful for the analysis of thermal waves, a topic of experimental and 
theoretical interest (Jou et a/ 1988, Joseph and Preziosi 1989). 

To study the evolution of the fluctuations of the a; around a non-equilibrium steady 
state characterized by a temperature gradient VT one may use, in analogy to (2.11), 
the Legendre transform of S 

(3.8) S[V 71 = s( U, ai) - v a ,  A V T .  a1 

a;/aq = -vn,[q + A V TJ J$//da, = -varaf ( i 2 2 )  (3.9) 

with A the thermal conductivity. Thus, to describe the evolution equations for the 
fluctuations around a non-equiiibrium steady state one may write the same evoiution 
equations as in (3.5) but using c& defined as i, =q+AVT, 6; =a i  ( i * 2 ) ,  by analogy 
with what has been done in the preceding section. 

We want now to write (3.6) i n  the form of (2.13). Since we are in an inhomogeneous 
situation, there appear some differences with respect to the previous section. Following 
Grmela (1989) and Grmela and Lebon (1990), we define the quantity 

{A, E )  = V - '  d r 2  pi[V(JA/Jaj) (aB/au,+,) - v ( a B / J a i ) .  (aA/Ja,+,)]. (3.10) 

Integration by parts yields 

which yields 

I ;  
.V. ( ~ L i a E / J a , + , ) + ~ , ( J A / J a , + , )  .V(JE/Ja;)] (3.11) 
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which turns out to be a Poisson bracket when the p, are constant. If  they are not, the 
Jacobi identity (2.16) will imply that the p( satisfy specific differential equations. 

The bracket definition (3.11) and the use of the free energy G = j d r ( u  - To.;), with 
To a constant reference temperature, as the generating potential, yields the reversible 
part of (3.6), i.e. the left-hand side of (3.6), provided one identifies p, =(T ,a ,+ , ) - ' .  
Note that a ,  = 7 , ( A T 2 ) - ' ,  with T ,  the relaxation time of q. 

The dissipative part is formally identical to that of the previous section. Indeed, 
the entropy production obtained when (3.6) are introduced into (3.4) is 

M Grmela and D Jou 

= 1 (a , /  T,)a ,  . a,. (3.12) 

As in (2.21) we define the dissipative bracket as 
? 

with Ci = (aG/Jai)  and 4 a dissipative potential defined as in (2.22) and which now 
has the form 

cb =(T, /2)C (ai/T!)ac.  a!. (3.14) 

The definitions (3.10) and (3.13) of the Poisson bracket and the dissipative bracket 
and the use of the generalized free energy of EIT and the dissipative potential (3.14) 
allow one to write the hierarchy (3.6) of evolution equations in the compact form (2.13). 

Note that the two kinds of hierarchies treated in sections 2 and 3 are not funda- 
mentally different from each other. The term in the divergence of the flux a,+, in the 
evolution equation for a, may be considered as the part of daJdt  orthogonal (in the 
statistical mechanical sense, i.e. according to the scalar product (2.3)) to the variables 
of lower orders, so that the general structure of section 2 could also cover the one in 
section 3. We have preferred to keep both presentations separated from each other for 
pedagogical reasons. 

4. The nonlinear regime: Hamiltonian versus thermodynamic restrictions 

To write the dynamic equations of EIT in Hamiltonian form is much more than a 
formal exercise. To make the physical interest of such a reformulation evident, we 
must go to the nonlinear regime and suppose that the transport coeflcients are themselves 
functions of the dynamic variables. 

We concentrate our attention on the problem studied in section 2 (the other one, 
being inhomogeneous, leads to a much more complicated situation, though the basic 
ideas are of course the same). From the point of view of thermodynamics, the only 
pieces of information on the coefficients appearing in (2.6) are 

Observe that now these coefficients are assumed to depend on the dynamic variables 
J,. With respect to the coefficients p, identified in (2.20), nothing may be said from a 
thermodynamic point of view, since %:,,+, may be positive or negative: thus, no 
particular restrictions arise on them. 
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In contrast, the Hamiltonian formulation is more stringent. This is so because of 
the  requirements arising from the Jacobi identity (2.16). We will explore them in detail. 
To do  that, it is useful t o  write the Poisson bracket in the form (Salmon 1988) 

(4.2) 

(4.3) 

{ F, G 1 = (J  F / U ,  ) J ;' ( a  C /  J Ji ) 

where J' is an antisymmetric matrix given, in our  case, by 
J"  = - J J ' =  p.S 

I , . ' + l ,  

I t  is easily seen that indeed (4.2) and (4.3) are equivalent to the Poisson bracket (2.14). 
In  terms of the elements of the matrix J",  the Jacobi identity (2.16) may be written as 
(Salmon 1988, p 230, Arnold and Givental 1990, p 32) 

J'"(d J"/a J,, ) + J.'"'( aJ "/ J J,,, ) + J ""( J J '//a J ,  ) = 0. (4.4) 

Summation with respect to repeated indices i s  understood in (4.2) and (4.4). Given 
the special form of J 5  used in (4.3), (4.4) leads to the conditions (for j = i +  1 ,  k = i +  2) 

-p,(Jpj+2/JJj)+p,+i(JpLi+2/JJ,+2)-pL,+Z(Jp,+,/aJ;+,)+pi+~(JpLi+,/JJ,+,)=o. (4.5) 

To illustrate the restrictions (4.5) explicitly we assume, as a particular example, 
that the p, are of the form 

+;= p,.exp(F a,.,.!,). (4.6) 

When (4.6) are introduced into ( 4 . 3 ,  and given the independent character of 
J , ,  . . ., J , .  . . one  finds the restrictions 

al - i z , i  = O  Q ? + ~ , ~ + ~  = a i + l . , + 4 =  0. (4.7) 

pj = pLi0 exp(a; J, . J,  + a i + ,  J;+,  . J,.+. ,  (4.8) 

where the coefficients a; do not depend on J, but only on T and p (temperature and 
pressure of the system). 

The restrictions (4.4) are valid for arbitrary i, j and k. The conditions (4.5) have 

on the by considering different values of j and  k. Due to (4.3), when j =  k, (4.4) 
yields an identically vanishing expression. When j = i +  1 and k = i + n, with n > 2, (4.4) 
and  (4.3) yield 

i n  more expiicit terms, one  soiution OF (4.5) wouid be 

*l.+o;nnA f". +ha r..n,.i.,, r " C ~  ;-:I 1 I,- i l l  n"- - ,... -I-*..:.. ^*L :-.:--. 
V C C . .  Y V L I I I I C "  1Y1 L l l L  a p , " L Y 1  -"a,., - I  I L, n - t I L.  "11s "lay " " L d l l l  "I11S1 1S>LIICLI", ,> 

(4.9) 

~ j (J~ ,+ , , /JJ~+, ) -pj - , (Jpj+~/JJj- , )  = O .  (4.10) 

If the form (4.6) for the  p, is used, (4.9) and (4.10) lead respectively to 

o , , = O  ( m > i + 2 )  am,; = 0 ( m  < i). (4.11) 

I n  synthesis, if the form (4.6) is adopted, then it  follows that a, , ,  = O  except when j = i 
or j =  i + l ,  i.e. the expression (4.8) is the  only one allowed. 

The restrictions (4.5), (4.9) and (4.10) are clearly not obtainable f rom purely thermo- 
dynamic arguments, but arise in a very direct way in the Hamiltonian formalism. To our 
knowledge, these restrictions have never been mentioned in the literature on non- 
equilibrium thermodynamics. 
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Let us finally mention that a Lagrangian formalism has been used by Nettleton 
(1986) to explore EIT in the nonlinear regime, but in another context different from 
the hierarchies studied in this paper and without using the conditions arising from the 
Jacobi identity. 

5. Concluding remarks 

Probably the most interesting result of the present paper concerns the possibility of 
obtaining restrictions on the nonlinear transport coefficients of the non-dissipative part 
of the constitutive equations for the evolution of the thermodynamic fluxes. Of course, 
whether the non-dissipative dynamics is really Hamiltonian or  not should be decided 
experimentally. From a theoretical point of view, the hypothesis that the conservative 
part is Hamiltonian appears quite reasonable: the underlying microscopic dynamics 
is Hamiltonian and the hydrodynamics of the ideal fluid is also Hamiltonian (Salmon 
1988). It seems normal to think that the conservative part of the evolution equations 
at the intermediate stages defined by taking more and more higher-order fluxes in the 
description should also be Hamiltonian. 

The analysis in this paper shows a new argument to introduce the fluxes as 
independent variables into the entropy or into the Gibbs free energy. Several arguments 
have been examined at length by Jou et a1 (1988). Here, it can be seen that their 
introduction into the thermodynamic potentials allows one to use them as generating 
potentials, giving to the non-dissipative part of the evolution equations a Hamiltonian 
structure, which would not have been achieved with the classical thermodynamicpotentials. 
This reinforces the physical convenience of their consideration as thermodynamic 
independent variables and, furthermore, it enlightens the role of the generalized 
potentials as generating functions of the dynamics of the fluxes (which are considered 
as ‘fast’ variables in the classical theory and as ‘slow’ variables in EIT, due to the 
difference of time-scale considered in both theories). 

Another comment refers to the meaning of the positivity of the entropy production, 
which is taken as a postulate in EIT. Here, it is seen that the positive character of the 
generalized entropy production ensures that the generalized description including fast 
variables will decay to a local-equilibrium hydrodynamics in a short time. In fact, if 
we assume a (purely hypothetical) situation in which T, >> T~ >>. . . , the positivity of the 
generalized entropy used in this paper would require that the description in terms of 
n variables would tend to the description in terms of n - 1 variables after a time 
T”-, > t >  T.. In such a case, these hierarchical models offer a simple illustration of a 
many-level description of the system, ranging from the local-equilibrium one at long 
times to a completely kinetic description in terms of an infinite number of variables 
at very short times (in fact, for a system of N particles the microscopic description 
would require 6 N  variables, which may be taken as infinite in the thermodynamic limit). 
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